N ) DIFFERENTIAL CALCULUS FROM THE DIFFERENTIAL CALCULUS ON GL q ( N ) ∗

نویسنده

  • A. P. ISAEV
چکیده

We show that the Faddeev-Pyatov SL q (N) differential algebra [1] is a subalgebra of the GL q (N) differential algebra constructed by Schupp, Watts and Zumino [2]. In the paper [1], the bicovariant differential algebra on SL q (N) (see below (10), (11)) with generators {T ij , L ij , ˜ Ω ij } i, j = 1,. .. N has been constructed. The elements T ij are generators of the algebra F un(SL q (N)), while L ij generate a matrix of the right-invariant Lie derivatives on SL q (N) and the elements˜Ω ij define the basis of the right-invariant differential 1-forms on SL q (N). It has been shown [1] that this algebra is consistent with imposing the conditions: det q (T) = Det q (L) = 1 , T r q (˜ Ω) = 0 , (1) where we use Det q (L) = det q (LT) 1 det q (T) , T r q (˜ Ω) = N i=1 q −N −1+2i˜Ω ii .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

3 v 1 1 9 N ov 1 99 2 GL q ( N ) - Covariant Quantum Algebras and Covariant Differential Calculus ∗

We consider GL q (N)-covariant quantum algebras with generators satisfying quadratic polynomial relations. We show that, up to some inessential arbitrari-ness, there are only two kinds of such quantum algebras, namely, the algebras with q-deformed commutation and q-deformed anticommutation relations. The connection with the bicovariant differential calculus on the linear quantum groups is dissc...

متن کامل

An analytic study on the Euler-Lagrange equation arising in calculus of variations

The Euler-Lagrange equation plays an important role in the minimization problems of the calculus of variations. This paper employs the differential transformation method (DTM) for finding the solution of the Euler-Lagrange equation which arise from problems of calculus of variations. DTM provides an analytical solution in the form of an infinite power series with easily computable components. S...

متن کامل

Matrix Mittag-Leffler functions of fractional nabla calculus

In this article, we propose the definition of one parameter matrix Mittag-Leffler functions of fractional nabla calculus and present three different algorithms to construct them. Examples are provided to illustrate the applicability of suggested algorithms.

متن کامل

A distinct numerical approach for the solution of some kind of initial value problem involving nonlinear q-fractional differential equations

The fractional calculus deals with the generalization of integration and differentiation of integer order to those ones of any order. The q-fractional differential equation usually describe the physical process imposed on the time scale set Tq. In this paper, we first propose a difference formula for discretizing the fractional q-derivative  of Caputo type with order  and scale index . We es...

متن کامل

The Effects of Different SDE Calculus on Dynamics of Nano-Aerosols Motion in Two Phase Flow Systems

Langevin equation for a nano-particle suspended in a laminar fluid flow was analytically studied. The Brownian motion generated from molecular bombardment was taken as a Wiener stochastic process and approximated by a Gaussian white noise. Euler-Maruyama method was used to solve the Langevin equation numerically. The accuracy of Brownian simulation was checked by performing a series of simulati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995